skip to main content


Search for: All records

Creators/Authors contains: "Zhang, Zhiyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In this work, we explored a bioinspired method for underwater object sensing based on active proprioception. We investigated whether the fluid flows generated by a robotic flapper, while interacting with an underwater wall, can encode the distance information between the wall and the flapper, and how to decode this information using the proprioception within the flapper. Such touchless wall-distance sensing is enabled by the active motion of a flapping plate, which injects self-generated flow to the fluid environment, thus representing a form of active sensing. Specifically, we trained a long short-term memory (LSTM) neural network to predict the wall distance based on the force and torque measured at the base of the flapping plate. In addition, we varied the Rossby number (Ro, or the aspect ratio of the plate) and the dimensionless flapping amplitude (A) to investigate how the rotational effects and unsteadiness of self-generated flow respectively affect the accuracy of the wall-distance prediction. Our results show that the median prediction error is within 5% of the plate length for all the wall-distances investigated (up to 40 cm or approximately 2–3 plate lengths depending on theRo); therefore, confirming that the self-generated flow can enable underwater perception. In addition, we show that stronger rotational effects at lowerRolead to higher prediction accuracy, while flow unsteadiness (A) only has moderate effects. Lastly, analysis based on SHapley Additive exPlanations (SHAP) indicate that temporal features that are most prominent at stroke reversals likely promotes the wall-distance prediction.

     
    more » « less
  2. Metalorganic chemical vapor deposition (MOCVD) is a promising technique for wafer-scale synthesis of MoS2 monolayers for 2D field-effect transistors (2D-FETs) and related devices. Epitaxial growth of MoS2 on sapphire provides films that are crystallographically well-oriented but typically contain low-angle grain boundaries (e.g., mirror twins), voids, and other defects depending on growth conditions and substrate characteristics. In this study, we investigate microstructure, optical properties, and field-effect characteristics of wafer-scale MoS2 monolayers grown by MOCVD on c-plane sapphire over a narrow window of growth temperatures (900–1000 °C). The density of low-angle grain boundaries in the MoS2 monolayer was found to decrease dramatically from 50% areal coverage for films grown at 900 °C to 5% at 1000 °C. This decrease in low-angle grain boundary density is correlated with an increase in the room-temperature photoluminescence intensity of A excitons and a decrease in the full-width-half maximum (FWHM) of the Raman A1g peak, which are typically indicative of a general reduction in defects in MoS2. However, the best transport properties (e.g., mean field-effect mobility mFE = 17.3 cm2/V s) were obtained in MoS2 monolayers grown at an intermediate temperature of 950 °C. It was found that as the growth temperature increased, small regions bound by high-angle boundaries begin to appear within the monolayer and increase in areal coverage, from ∼2% at 900 °C to ∼5% at 950 °C to ∼10% at 1000 °C. The growth temperature of 950 °C, therefore, provides an intermediate condition where the combined effects of low-angle and high-angle boundaries are minimized. The results of this study provide guidance on MOCVD growth and characterization that can be used to further optimize the performance of MoS2 2D-FETs.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  3. null (Ed.)
  4. null (Ed.)